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Laplace transform [the unity on the right-hand side 
of the first equation of (14)] cannot be derived 
straightforwardly. Nevertheless, because their equa- 
tion (14) is correct for some reason, the author 
believes that the rest of their calculation is useful. In 
fact, their equation (15) is the same as the present 
result [(16a) and (16b)] if one replaces {r/(1 + rPo.h)} 
with the general expression g(Po.h) after putting Po = 
p and Ph = q. 
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Abstract 

The joint probability distribution method described 
in paper I [Giacovazzo, Burla & Cascarano (1992). 
Acta Cryst. A48, 901-906] and paper II [Burla, 
Cascarano & Giacovazzo (1992). Acta Cryst. A48, 
906-912] of this series has been considered in order 
to obtain a function that is maximized by the true 
crystal structure. The phasing process is carried out 
by maximizing such a function via a modified tan- 
gent refinement: this implies the active use of 
negative triplet and quartet relationships. The major 
effects provoked in a direct procedure by the use of 
numerous phase relationships with expected negative 
cosines are analysed. Practical applications are also 
described. 

Symbols and notation 

We adopt the symbols and notation used in papers I 
and II of the series (Giacovazzo, Burla & Cascarano, 
1992; Burla, Cascarano & Giacovazzo, 1992). 

Introduction 
In papers I and II, the conditional joint probability 
distribution of n phases given p (p___ n) moduli was 
studied. The calculations were performed in order to 
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allow for large values of n and p: i.e. n should be the 
number of strong reflections to be phased by a 
standard direct procedure and p may be the number 
of measured reflections. Two expressions were 
derived, both including triplet and quartet invariant 
contributions: the first formula [see equation (1) of 
paper II] may be considered as a development of 
Hauptman's mathematical approach, the second [see 
equation (2) of paper II] of Giacovazzo's approach. 
Both expressions were checked to assess their theo- 
retical soundness and practical usefulness for phase 
solution. The first one was found to present unac- 
ceptable features for a well behaved distribution 
(in agreement with some recent results obtained 
by Altomare, Burla, Cascarano, Giacovazzo & 
Guagliardi, 1993). The second distribution function, 
even though better designed, is not maximized by the 
correct set of phases (as one would expect for suffi- 
ciently large values of n and p). Accordingly, the 
combined use of triplet and quartet invariants in the 
tangent procedure proved to be of limited usefulness. 
This was ascribed to the limited accuracy of the 
probabilistic estimates of quartet invariants and, 
therefore, to some insufficiency in the mathematics 
used by Hauptman and by Giacovazzo. We show in 
this paper that a modified expression for the distribu- 
tion (2) of paper II is frequently maximized by the 
correct solution. As a practical consequence, the 
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active use of negative estimated triplet and quartet 
invariants in the phasing procedures is suggested. 
However, the massive use of negative invariants in a 
tangent routine creates non-negligible problems that 
are here analysed. Applications are also presented. 

A distribution function to maximize  

To aid the reader, we reproduce equation (2) of 
paper II. 

P(~Ol,. . . ,~,IR~,. . . ,Rp) 

1 ( ) 
=~exp  ~'. To.tcosto.l + ~'. QulmCOSqijtm , 

triplets quartets 
(1) 

where L is a normalization constant, 

tijt = 6oi + q~j + q~t, 

qijlm = ~Oi + (~Oj + ~O l + ~Om, 

TO.t = 2RiRjRt /m  1/2, 

Q'blm = Bijlm( w + w565 + w686 "[- w767)/(1 + Ziflm) ,* 

Bglm = 2RiRjRtRm/N 

and 

Zijlm = [(/~le2 + e3e4)Wse5 + (e l e3  + e2E4)w686 

-[- ( e l e  4 -[- e,2~,3)w7e7]/2N. 

The function (1) will be maximum when 

S "  -" Z Tijlcostijl + Z Q'btmCOSqijl,,, = m a x i m u m .  
triplets quartets (2)  

If (2) is truncated to N-1/2-order terms, it reduces to 

S = ~ Tulcost/jl = maximum, (3) 
triplets 

which coincides with Cochran's (1952) relationship 

S = fp3(r )dr  = maximum. 
v 

It was shown in paper II that neither (2) nor (3) is 
usually satisfied by the correct set of phases. In 
general, things get worse if the quartet contribution 
is considered. That was ascribed (see paper II) to the 
lower accuracy of the quartet estimates. We note 
now that the quartet contribution to S", say 

S Q " =  S'. QijlmCOSqijlm, 
quartets 

behaves quite similarly to S; in particular, it is 
always maximum for the Patterson solution and 
increases when n increases. Such behaviour may also 
be associated with the objective correlation between 

* In paper II, the expression for Q'b~,~ was reproduced incorrec- 
tly. The form given here is correct. 

the positive estimated quartets and the triplets (each 
positive estimated quartet is the sum of two triplets 
in S). If this hypothesis holds, any formula that is 
unable to destroy such a correlation will also be 
unable to improve the behaviour of S by the addi- 
tional quartet contribution. It was emphasized in 
paper II that both the Hauptman and Giacovazzo 
quartet theories frequently require the use of math- 
ematical approximations (normally series expan- 
sions). While negligible for single-quartet estimation, 
their effects are quite remarkable when a large 
number of triplet and quartet relationships are simul- 
taneously handled. This makes it difficult to correct 
for triplet and quartet correlation. In the framework 
of Giacovazzo's theory, a useful practical choice 
would be to eliminate from the set of quartets in (2) 
the subset of positive estimated quartets. Then, no 
pair of triplets can be found in S that by addition 
generates a negative estimated (neg. est.) quartet. Let 
us denote by S Q N "  the contribution to S" arising 
from the negative quartets. Then, it is interesting to 
study the behaviour of 

S ' =  Z TijlCOStijl+ Z Q"ijlmCOSqijlm 
triplets neg. est. 

quartets 

= S + SQN" ,  (4) 

to see if the relation 

S" = maximum (5) 

is satisfied by the correct set of phases. We use the 
test structures quoted in Table 1. We first pay atten- 
tion to the structures BED, CEPHAL, GRA4, 
MBH2, NEWQB, PGE2, QUINOL and 
SCHWARZ, which crystallize in symmorphic space 
groups, where the so-called 'Patterson solution' is 
frequently encountered among the trials produced by 
a multisolution process. In particular, we want to see 
if the value of S "  calculated for the correct structure 
is larger than the corresponding value for the 'Pat- 
terson solution'. While (5) is an asymptotical 
property (it is expected to be satisfied for sufficiently 
large values of n and p), it is important to check its 
behaviour when n is the number of reflections usually 
phased in a standard direct procedure. The results 
are shown in Table 2: n is the number of large- 
modulus reflections chosen by SIR88 (Burla, 
Camalli, Cascarano, Giacovazzo, Polidori, Spagna & 
Viterbo, 1989) for the phasing process and NTRIP 
and NQUAR are the numbers of calculated triplets 
and negative quartets, respectively. The quartets are 
obtained by the standard SIR88 program as differen- 
ces of pairs of psi-0 triplets. The triplet contribution 
S to S" for the correct solution and for the 'Pat- 
terson solution' is calculated using Cochran's tradi- 
tional To. ~ coefficients. We note that, while S is never 
maximum for the true solution, S'" is a maximum for 
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Table 1. Code name, space group and crystallo- 
chemical data for the test structures 

Structure Space 
code* group Molecular formula Z 

AMIDE °) Pbc2 CTHgN302 8 
APAPA P4~2t2 C3oH37N~50~6P2.6H20 8 
AZET Pca21 C21HIrCINO 8 
BED /4 C26H26N404 8 
BOBBY P213 Na ÷ .Ca 2 + .N(CH2CO2)]- 4 
CEPHAL C2 C,sH2~NO4 8 
CIME (2) Cc CIoHIsNrSO 4 
CUIMID P3221 C6HsCICuN4 6 
DIAM P42/n CI4H200 8 
DIOLE l~2d C~oH~802 16 
ERGO P2t2~2z C2sH~O 8 
ERICA O) P2t C37H43FeO4P 2 
FEGAS t4) P6ffmmc Fe2Ga2S5 2 
GIAC cs) P2~/c  CI7HITNO2S 4 
GOLDMAN2 Cc C28HI6 8 
GRA4 tr) P-i" C3oH22N204 2 
HOV 1 C 2 / m  Pr14NilrSiH 4 
INOS P2~/n  CrHt206.H20 8 
LOGANIN P2~2~2j Ci7H26Olo 4 
MBH2 PI CjsH2403 3 
MGHEX P3~ C48H68N~2MgO~2.2CIO,.4CH3CN 3 
MUNICH1 C2 C2oHi6 8 
NEWQB PT C24H20N205 4 
NO55 Fdd2 C2oH24N4 16 
PGE2 PI C2oH3205 1 
POCRO tT) B112/m K2SelrCrlo 1 
QUINOL R] C6H602 54 
RIFOLO ~s) P21 C39H49NOI3.CH3OH.H20 2 
SALEX(9) p~ + 3 + K3.86Nas.30H30 o.s4Fe6 .- 

O2(SO4) t 2.17.08H20 1 
SCHWARZ PI C46H70027 1 
SELENID P2~ C22H2802Se 2 
SKN l°°) P31 CTH,rCINO4 3 
SUOA P2t2~2~ C2sH38Oj9 4 
TPH C222, C24N2H2o 12 
TUR10 P6322 C15H2402 12 
WINTER2 P2t C52HsaNHO,6.3CHEC12 2 

*Complete references for most of the structures are not given 
for the sake of brevity. The reader is referred to magnetic tapes 
distributed by the crystallographic group in Grttingen. 

References: (1) Viterbo (unpublished); (2) Kojir-Prodir, 
Ru~.ir-Toro~, Bresciani-Pahor & Randaccio (1980); (3) Bromley, 
Collingwood, Davies, Othen & Watkin (1990); (4) Cascarano, 
Douggy-Smiri & Nguyen-Huy Dung (1987); (5) Babudri, Florio, 
Zuccaro, Cascarano & Stasi (1985); (6) crystallographic group of 
York (private communication); (7) Nguyen-Huy Dung, Vo-Van 
Tien, Behm & Beurskens (1987); (8) Cerrini, Lamba, Burla, 
Polidori & Nunzi (1988); (9) Scordari & Stasi (1990); (10) distri- 
buted by the crystallographic group in Oxford (unpublished). 

GRA4, MBH2, NEWQB, PGE2, QUINOL and 
SCHWARZ. This remarkable result may be further 
improved if we replace Cochran's T,j~ parameters by 
the corresponding parameters provided by the P10 
formula (Cascarano, Giacovazzo, Camalli, Spagna, 
Burla, Nunzi & Polidori, 1984). The results are 
shown in Table 3. Now S"  is a maximum for the 
correct solution in all cases. The general effect of the 
P10 formula (compare Table 3 with Table 2) is that 
S"  increases for the correct solution and decreases 
for the Patterson solution. 

An important additional test, of remarkable prac- 
tical interest (see next section), is the assessment of 

Table 2. Results for structures crystallizing in a sym- 
morphic space group with the triplet contribution to S 

and S'" calculated using the Cochran parameters 

n is the number of strong reflections chosen by SIR88; NTRIP and 
NQUAR are the numbers of triplets and quartets found among 
the n reflections; values of S, SQN" and S'" are given for the 
correct structure and, in parentheses, for the 'Patterson solution'. 

Structure 
code n NTRIP S NQUAR SQN" S'" 

BED 286 4585 3079 8192 339 3418 
(6490) ( - 2999) (3491) 

CEPHAL 334 3751 2768 4464 224 2991 
(4754) ( - 1256) (3498) 

GRA4 394 5 8 9 8  23225 10023 2810 26034 
(25694) ( - 4682) (21011) 

MBH2 416 3494 3911 5220 341 4252 
(5894) ( - 1840) (4054) 

NEWQB 473 5365 5252 36007 793 6045 
(7868) ( - 4672) (3196) 

PGE2 300 3736 5007 12564 795 5803 
(7695) ( - 5702) (1992) 

QUINOL 296 6025 8763 70136 1734 10497 
(11657) ( - 8637) (3020) 

SCHWARZ 470 4556 6002 6852 404 6407 
(8551) ( - 2540) (6012) 

Table 3. Results for structures crystallizing in a sym- 
morphic space group with the triplet contribution to S 

and S'" calculated using the P10 formula 

See caption of Table 2 for explanation. 

Structure 
code S S" 

BED 3801 4140 
(5827) (2828) 

CEPHAL 3095 33 i 9 
(4478) (3222) 

GRA4 24234 27043 
(24923) (20241) 

MBH2 4364 4705 
(5604) (3764) 

NEWQB 5828 6621 
(6130) (1459) 

PGE2 5578 6373 
(6639) (937) 

QUINOL 10052 11786 
(10014) (1377) 

SCHWARZ 6585 6989 
(8199) (5660) 

whether S"  is more efficient than S as a figure of 
merit; i.e. if S" is (or is close to) a maximum for the 
correct structure, even with respect to the various 
trial solutions produced by a multisolution 
approach. In Table 4, we show for SCHWARZ the 
values of S (Cochran's parameters) and S"  for the 
best ten solutions stored by a default run of SIR88 
(for each set, the value of the standard combined 
figure of merit CFOM is also given). Set 1, selected 
for its highest value of CFOM, is the true solution, 
with which the largest value of S"  is associated. 
However, S is a minimum for set 1. Analogous 
calculations for BED and CEPHAL show that S"  is 
again a maximum for the correct solution while the 
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Table 4. S C H W A R Z  results 

For each of the ten trial solutions stored by a default run of 
SIR88, the combined figure of merit CFOM and the values of S 
a n d S "  are given. 

Set CFOM S S'"  

1 0.919 5994 7428 
2 0.628 6347 6900 
3 0.607 6373 6846 
4 0.607 6418 6871 
5 0.607 6349 6753 
6 0.605 6432 6897 
7 0.605 6346 6797 
8 0.604 6454 6886 
9 0.596 6393 6800 

10 0.596 6448 6867 

maximum of S is attained for an incorrect solution. 
Our conclusion is that the maximum of S "  tends to 
characterize the correct solution with much higher 
frequency than the maximum of S. 

Practical use of the term S" in tangent procedures 

In SIR88, phases are determined using the classical 
tangent formula (Karle & Hauptman, 1956) 

tan ~oh = E Th,kSin(~0k + q ~ h - k ) / Z  Th,kCOS(~0k + ~0h-k), 
k k 

with the following modifications: (a) the Th,k are tt: ~, 
reliability parameters provided by the P10 formula; 
(b) the negative estimated triplets are excluded from 
the phasing process. The negative estimated triplets 
are combined with the negative estimated quartets to 
give rise to a powerful figure of merit (Cascarano, 
Giacovazzo & Viterbo, 1987; Cascarano, Giacovazzo 
& Guagliardi, 1992). 

The results described in the preceding section sug- 
gest the active use in the phasing process of the 
negative estimated triplets and quartets via the 
modified tangent formula: 

g-  

~0h = / Z. Th,k sin (~0k + ~0h-k) tan 
I -  

-1  

+ Z Q'h,k,, sin (~0 k + ~1 + ~h -- k - l )  ] 
k,I -I 
I "  

x / E Th,k cos (q~k + ~Oh - k) 
L k  

"1 1 

COS(~Dk "11- ~01 "[- ~0h-k i)/ -~- /_..~h,k,l~-'f'}" 
k,I 3 

= A h / B  h. (6) 

This choice may be justified in the following way. 
The traditional tangent formula tries to maximize S 
starting from any initial set of phases. The trials 
produced by a muitisolution procedure correspond 
to relative maxima of S: the various solutions are 
prevented from resulting in the same absolute maxi- 
mum (usually corresponding to a wrong solution) by 
the prior information contained in the starting set of 

phases and in the space-group symmetry. The correct 
solution is eventually found by suitable figures of 
merit amongst the trials corresponding to relative 
maxima of S. If negative estimated triplets and quar- 
tets are introduced into (6), the phasing process tries 
to maximize S" rather than S. Since the maxima of 
S" will result in a correct solution with higher fre- 
quency than the maxima of S (see the previous 
section), a direct procedure using (6) is expected to 
succeed with higher frequency than a procedure 
using (5). 

It is worthwhile to stress the innovative aspect of 
such a practice: the tangent formula directly tends to 
maximize a figure of merit rather than satisfy (3). 

Applications 

The active use of numerous negative phase rela- 
tionships requires some non-negligible modifications 
in the tangent procedures. These mainly concern the 
tangent weighting scheme and the calculation of the 
figure of merit. 

The tangent weighting scheme 

The weight Wh associated with ~0h (Hull & Irwin, 
1978; Burla, Cascarano, Giacovazzo, Nunzi & 
Polidori, 1987) is often assumed to depend on the 
ratio ah/(O~h) o r  (ah--(ah))/O%h, where a h = ( A  2 + 
B~) ~/2. If only positive triplet relationships are used, 
ah may be considered as the modulus of the resultant 
of complex vectors Tu~ exp(ito3 under the hypothesis 
that the tut are distributed around zero according to 
yon Mises distributions. Then, 

(ah) = Y. Th,kD,(Th,k), (7) 
k 

~r 2 = (1/2)ETZ,k[1 + D2(Th,k) -- 2D~(Th,k)]. (8) 
O~ h 

k 

Di(x) = Ii(x)/Io(x) is the ratio of two modified Bessel 
functions, of orders i and zero. 

Now, the additional use of negative triplets and 
quartet invariants breaks this assumption (i.e. 
negative phase invariants are now distributed around 
rr). Calculations that are, for brevity, not shown here 
[see Cascarano, Giacovazzo, Burla, Nunzi & 
Polidofi (1984) for the theoretical background] give 
the following result: 

(ah) = XlTh,klD,(Th,k) + Y. lOh,k,,lD~(Qh,k,,) (9) 
k k,! 

a "z = (1/2)Z T2,k[1 + D2(Th,u) - 2D~(Th,k)] Ot h 

k 

+ (1/2)Z Q2 k,,[1 + D2(Qh,kj) -- 2D2(Th.k,,)]. 
kJ (10) 

Relations (9) and (10) show that the value of a "2 is ~e h 

not affected by the signs of T and Q, while the value 
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of (ah) is very sensitive to them. In general, the 
additional existence of negative phase relationships 
lowers (ah) and, therefore, the expected phase 
reliability of q~h. 

Figures of merit 

The ratios ah/(ah) and ( a h -  (teh))/tra h are crucial 
for some time-honoured figures of merit such as 
MABS, ABSFORM and R~ (Declercq, Germain & 
Woolfson, 1979; Karle & Karle, 1966) and some new 
ones like NALF (Cascarano, Giacovazzo & Viterbo, 
1987; Cascarano, Giacovazzo & Guagliardi, 1992). 
Use of (9) and (10) rather than (7) and (8) allows a 
more correct calculation of the parameters (a,) and 
O ' o ~  h • 

A modified version of SIR92 (Altomare, 
Cascarano, Giacovazzo & Guagliardi, 1993) has 
been used to check the efficiency of (6). The results 
are shown in Table 5. The following points should be 
noted: 

(a) The structure solution is always attempted by a 
default run of SIR92. The starting set of phases 
includes only the origin- (and eventually the 
enantiomorph-) fixing reflections plus five symbolic 
phases to permute according to the magic-integers 
approach (Main, 1977). 

(b) The relative efficiency of (6) is checked accord- 
ing to different protocols. (i) Equation (5) is first 
used where Zh, k a r e  Cochran's parameters (protocol 
1). (ii) Equation (5) is again used where the Th,k are 
the P10 parameters (protocol 2). As in SIR88, only 
positive estimated triplets are actively used. (iii) 
Equation (6) is applied (protocol 3), which involves 
the active use of negative triplet and negative quartet 
invariants. 

Table (5) shows that: 
(i) 17 structures (BED, CEPHAL, ERGO, 

GOLDMAN2, GRA4, NOV1, MBH2, MGHEX, 
MUNICH1, NEWQB, NO55, PGE2, QUINOL, 
SCHWARZ, SUOA, TPH and WINTER2) are not 
solved by a default run according to protocol 1. 

(ii) Only 10 structures (CEPHAL, ERGO, HOV1, 
MGHEX, MUNICH 1, NEWQB, PGE2, 
SCHWARZ, SUOA and WINTER2) remain 
unsolved after a default run according to protocol 2, 
indicating the greatest efficiency of the P10 estimates. 

(iii) Only five structures (MGHEX, MUNICH1, 
SCHWARZ, SUOA and WINTER2) remain 
unsolved after a default run according to protocol 3. 
The results prove the greater efficiency of the tangent 
formula that maximizes S" with respect to the tradi- 
tional tangent formula. As a last note, MGHEX, 
MUNICH1, SCHWARZ, SUOA and WINTER2 
are solved by nondefault runs of the program (e.g. by 
increasing the number of symbolic phases in the 
starting set). 

Table 5. Success and failure for the phasing process 
according to various protocols 

Protocol  1: only triplets es t imated by the Cochran  fo rmula  are 
used. Pro tocol  2: only triplets es t imated posit ive by the PlO 
formula  are actively used. Pro tocol  3: posi t ive and  negative esti- 
ma ted  (by the P10 formula)  and negative quar te ts  are actively 
used. Y denotes  success in the phas ing  process,  N denotes  failure. 

Structure 
code Protocol  1 Protocol  2 Protocol  3 

AMIDE Y Y Y 
APAPA Y Y Y 
AZET Y Y Y 
BED N Y Y 
BOBBY Y Y Y 
CEPHAL N N Y 
CIME Y Y Y 
CUIMID Y Y Y 
DIAM Y Y Y 
DIOLE Y Y Y 
ERGO N N Y 
ERICA Y Y Y 
FEGAS Y Y Y 
GIAC Y Y Y 
GOLDMAN2 N Y Y 
GRA4 N Y Y 
HOV1 N N Y 
INOS Y Y Y 
LOGANIN Y Y y 
MBH2 N Y Y 
MGHEX N N N 
M UNICH 1 N N N 
NEWQB N N Y 
NO55 N Y Y 
PGE2 N N Y 
POCRO Y Y Y 
QUINOL N Y Y 
RIFOLO Y Y Y 
SALEX Y Y Y 
SCHWARZ N N N 
SELENID Y Y Y 
SKN1 Y Y Y 
SUOA N N N 
TPH N Y Y 
TUR10 Y Y Y 
WINTER2 N N N 

Concluding remarks 

The use of negative quartets in modified tangent 
procedures is not new [see their clever use in 
SHELXS86 (Sheldrick, 1991)]. However, the com- 
bined use of negative triplet and quartet relationships 
was never attempted, mostly because of their gen- 
erally small reliability. This paper uses probabilistic 
considerations to give a theoretical justification for 
their active use in the phasing process. In particular, 
the innovative principle of maximizing a figure of 
merit via the tangent formula is introduced. The 
applications prove that the phasing process succeeds 
more frequently. In a subsequent paper, we will show 
that more powerful figures of merit can be identified 
that can be maximized by application of the tangent 
formula. 

The authors thank Miss C. Chiarella for technical 
support. 
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Abstract 

The dynamical theory of electron diffraction for 
quasicrystals (QCs) was used to treat the splitting 
behaviour of higher-order-Laue-zone (HOLZ) lines 
induced by dislocations in icosahedral quasicrystals 
(IQCs). The influences of some parameters on the 
splitting of HOLZ lines were calculated. On the basis 
of this calculation, several experimental convergent- 
beam electron diffraction patterns from the 
aluminium-copper-iron IQC were simulated. Good 
agreement between the experiment and the simu- 
lation confirms the correctness of the dynamical 
theory of electron diffraction for QCs. 

I. Introduction 

For crystals, the dynamical theory of electron dif- 
fraction (Hirsch, Howie, Nicholson, Pashley & 

* Project supported by the National Natural Science Founda- 
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Whelan, 1965) has been successfully used to explain 
almost all the experimental phenomena. Head, 
Humble, Clarebrogh, Mortoon & Forwood (1973) 
developed a matching program to identify defects 
such as dislocations and stacking faults by use of the 
two-beam approximation of the dynamical theory. 
Tanaka, Terauchi & Kanemaya (1988) discussed the 
defocus convergent-beam electron diffraction 
(CBED) patterns from defected crystals and 
determined the Burgers vectors of the dislocations 
and the displacement vectors of the faults. Lu, Wen, 
Zhang & Wang (1990), Zou, Yao & Wang (1991) 
and Kuo & Wang (1992) developed the many-beam 
method to simulate experimental CBED patterns and 
obtained good agreement. Dynamical calculation or 
simulation has become a powerful tool to analyse 
and study defects in crystals. 

In this paper, we propose a method for treatment 
of the splitting of the higher-order-Laue-zone 
(HOLZ) lines in icosahedral quasicrystals (IQCs). 
This treatment is based on the dynamical theory of 
electron diffraction for QCs (see §2) proposed by 
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